collective ART 


 

hypnagogia 1

 

 

Divine inspiration


Fungi exist almost everywhere that moisture is present. They can be found as single-celled organisms that are invisible to the naked eye or as multiple-celled organisms, such as mushrooms. Fungi do not reproduce through sexual reproduction, seed, or photosynthesis, but rather through spores. These spores germinate to produce a dense network of interweaved, single-cell structures known as hyphae, which collectively assemble with incredible precision into much more complex structures called mycelium. The word “mycelium” is derived from New Latin and Greek origins and means “more than one”. The growth of mycelium is rapid; they release enzymes that help break down matter into a more digestible form, which they take in as energy. Fungi belong to a group of decomposers that includes bacteria, nematodes, snails, beetles, and earthworms. They help break down dead plant and animal matter into more soluble forms of simple sugars, nitrates, and phosphates that are used by other decomposers or for food by plants. Fungi are so numerous that they make up a large proportion of the biomass in all ecosystems. 

The ecosystem and plants do not exist without fungi. Nutrients are rarely found in a soluble enough form for a plant’s roots to take up. Nitrogen, for example, the nutrient needed in the most significant amounts by plants, is usually trapped within proteins that cannot be easily accessed. That’s where fungi come in, metabolizing proteins and transforming them into more soluble nitrates. A group of complex fungi exists that can form symbiotic (mutually beneficial) relationships with plants. Mycorrhizal fungi facilitate the transfer of nutrients from the soil into the plant roots, and in return, receive carbon from the plant. These symbiotic relationships begin when mycorrhizal fungus colonize a plant’s root zone and then spread out densely into the medium, forming a massive web that increases the surface area of the roots and the capacity for absorption. This web hyphae or “mycelium” can increase root mass by 300-8000 times the original size. Hyphae are so small they can squeeze and push their way around rocks and other obstructions, making collecting nutrients for the plants an easy task. 


by Gunnar Luetzow for ArtMagazin 2014 – Berlin